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Multifractal properties of absorption probabilities 
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t Department of Physics, King’s College, Strand, London WC2R 2LS, U K  
$ Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford 
OX1 3NP, UK 
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Abstract. We calculate the surface absorption probabilities for particles diffusing onto 
perfectly absorbing substrates. The ‘ f (n) ’  formalism purporting to represent the multifractal 
properties of the absorption probabilities is discussed in the context of some simple test 
cases. T h e y ( & )  universality classes of several similar surfaces are studied and it is found 
that t h e f ( n )  curves for surfaces with the same fractal dimension are different. 

1. Introduction 

There is current interest in developing the understanding of a large class of physical 
phenomena possessing a property of self-similarity in some part of their structure. 
These phenomena include percolation clusters (Stauff er 1979, Kapitulnik et a1 1983), 
random resistor networks (de Arcangelis er a1 1986, Blumenfeld et a1 1986), diffusion- 
limited aggregation (DLA) clusters (Meakin et al 1985, Turkevich and Scher 1985, 
Amitrano et a1 1986, Meakin 1986a, Halsey et a1 1986a) and phase-space trajectories 
of certain dynamical systems (Benzi et a1 1984, 1985, Jensen et a1 1985, Halsey et a1 
1986b). These phenomena are usually defined by some microscopic description, e.g. 
bond occupation for percolation or local differential equations of motion for dynamical 
systems. Following the microscopic description these phenomena are then understood 
in terms of a small number of macroscopic coordinates such as the first few moments 
of the distribution, e.g. the mean size of percolation clusters or average growth rate 
of the aggregate in DLA. Numerous studies (see, e.g., Stanley and Ostrowsky 1986) 
have shown that the above phenomena possess a very rich structure which is not fully 
captured by a macroscopic description. 

To this end a mesoscopic description is required. A larger number of coordinates 
is necessary but not so many that the problem becomes unmanageable. This presents 
a fundamental problem: what are the necessary coordinates? Because of the self- 
similarity appearing in all these problems a simple fractal description has been used. 
However, a single fractal dimension is inadequate as exemplified by the comparison 
of percolation clusters (Sur et a1 (1977) use d f =  d - p /  v )  and DLA clusters (Meakin 
1986b) in 3~ which are very different structures and yet have the same fractal dimension. 
A generalisation of a simple fractal to the concept of a multifractal has been introduced 
in an attempt to provide the desired mesoscopic description. 

We wish to make clear the distinction between the conceptual idea of a multifractal 
and any mathematical description which attempts to encode the idea. The conceptual 
idea is very simple (but suitably vague): a multifractal is an object which in some way 
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has many fractal dimensions associated with it. A fractal dimension is a rigorously 
defined quantity (i.e. the Hausdorff dimension; see Mandelbrot (19821, Falconer (1985) 
and  Hutchinson (1981)). What is required is a clear definition of how many such 
dimensions can be associated with a single object. It is one of the objectives of this 
paper to study a particular attempt at the latter problem (Halsey er a1 1986b) and  
determine how well it succeeds in satisfying the conceptual idea, especially for problems 
requiring numerical solutions. 

Multifractal structure arises not necessarily from the object alone, but through the 
particular process taking place on the object. To be clear the object will be called the 
'substrate set' and the process taking place on the object will be represented by a 
measure function, p. For example, a random resistor network could be the substrate 
set whilst the value of the voltage across the resistors defines the measure function. It 
is important to note that the whole multifractal structure depends on the measure 
function chosen. 

Halsey et a1 (1986b) proposed the following. The substrate set is partitioned into 
disjoint subsets, U,, of diameter I U,] = I , .  The diameter of a set U, is defined as 
supp {Ix - yl:  x, y E U l } ,  where supp is the least upper bound and Ix - yl is the Euclidean 
distance between x and y. For each subset the following scaling ansatz for the measure 
function (which they take as a probability measure, p( U, ) =pl )  is made: 

PI - 1; (1.1) 

N ( a )  - 1-f'"' (1.2) 

and  

where N ( a  ) d a  is the number of subsets U,, for which the exponent a lies in the 
interval [a ,  a + d a ] .  The multifractal description enters in the exponent f ( a )  which 
is now the fractal dimension of a subset of the substrate set for which the measure 
function has an  exponent in the interval [a ,  a + d a ] .  We will refer to this as the f( a )  
representation. Halsey et a1 (1986b) further proposed a method of obtaining the set 
of exponents { a , f ( a ) } .  We will call this the q formalism as it involves taking the qth 
moment of the probability measure. 

In this paper we consider simple non-fractal substrate sets shown in figure 1 and  
simple fractal substrate sets whose generators are shown in figure 2 .  Using these 

r 

( a )  I b )  

Figure 1. Non-fractal substrate sets: (a) a wedge with tip angle, y = ~ / 3 ,  and ( b )  a spike 
( y  = 0). The points r and s are nearest neighbours because of the periodic boundary 
conditions. 
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Koch 

( 0 1  ( b l  (Cl 

Figure 2.  The generators of the fractal substrate sets: ( a )  the Koch curve, ( b )  the curve 
K ,  and ( c )  the curve K,. 

substrate sets we choose the measure function to be a probability measure. The 
probability measure, { p i } ,  is determined by particles diffusing from infinity down onto 
the absorbing surface of the object, where p ,  is the probability of a particle being 
absorbed on the surface site i .  We will refer to it as the absorption measure. This 
work is a continuation of the work in Wilkinson and Brak (1987). Note that the 
substrate sets of the objects in figure 1 are not fractal on any length scale, whilst those 
in figure 2 are fractal in the limit of infinite recursion level. At any finite recursion 
level we loosely refer to them as incipient fractals or ‘rough’ surfaces. We pay particular 
attention to the meaning of the f (  a )  representation as determined by the q formalism 
and its success as a characterisation of multifractality. We are also interested in the 
transition from a rough to a fractal surface within the context of thef (a )  representation. 

The paper is arranged as follows. In § 2 we describe the methods used to compute 
the absorption measure and in §§ 3 and 4 we discuss the calculation of a and f ( a )  
respectively. In 0 5 we apply these methods to the incipient fractals of figure 2 and 
we conclude with § 6. 

2. Numerical techniques 

In this section we briefly discuss the relative merits of a number of different numerical 
methods for evaluating { p i }  and we make explicit the nature of the boundary conditions 
and approximations inherent in our model. We begin by making the problem discrete 
by placing the substrate set and diffusing particles on a lattice. In the calculations 
below we use both the simple quadratic and triangular lattices depending on the nature 
of the surface. All of the features of the model are shown in figure 3, where there are 

Figure 3. A simplified lattice showing the relevant features of the model. Full circles are 
absorbing sites and crosses are the release sites. 
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N = 20 sites in total. The substrate set consists of sites S = (0, 1, 2, 3,6} (note that site 
2 can never be contacted because of the discretisation, i.e. p z  = 0). The top boundary 
consists of sites T={16, 17, 18, 19) while sites R ={12, 13, 14, 15} are the sites from 
which diffusing atoms are released. The lattice is imagined wrapped on a cylinder so 
that sites on the right-hand edge are nearest neighbours of those on the left-hand edge. 
(Below we discuss the effects of the positions of T and R. Ideally we would like the 
boundary effects to be negligible.) 

We distinguish between interior sites ( I )  and boundary sites ( B  = T u  S ) .  We define 
rtJ as the probability of a diffusing particle stepping from i to j if it is already at i. 
Thus the r,, are elements of the probability transition matrix P such that 

f 4-' i f i # j ; i E I  
i f i = j ; i E Z  

if i # j ;  i E  B 
if i=j; i E  B 

where q is the coordination number of the lattice. If a diffusing particle starts at an 
interior site it will eventually be absorbed by a boundary site. This problem is an 
example of an 'absorbing Markov chain'. In the standard theory of such problems 
(see, e.g., Kemeny and Snell 1960) one transforms the matrix P into canonical form 

P = ( 1  D Q  0 )  

which is simply obtained by relabelling the lattice sites so that the absorbing sites have 
the lowest labels. Matrix D describes how particles may step from the interior to the 
boundary. Matrix Q describes how particles diffuse within the interior. The funda- 
mental matrix F is defined by 

33 

- F =  Q"=( l -Q) - '  (2.3) 
n = O  

and EJ is the expected number of times that the diffusing particle will be at site j after 
starting from site i. Then the probability, A,, of starting at i and being absorbed at j 
is given by 

A = FD. (2.4) 

The distribution { p , }  follows trivially from (2.4) by averaging over the release sites. 
From a practical point of view this method amounts to inverting an N x N matrix. 

Library routines are available to do this but the disadvantage is the large memory 
requirement. One can reduce this slightly by calculating Q" directly by matrix multipli- 
cation, although this is rather slower. 

A different approach stems from recognising the correspondence between our 
diffusion problem and the Dirichlet problem in electrostatics (see, e.g., Doyle and 
Snell 1983, Niemeyer et a1 1984). We imagine that the sites B are points on a conductor 
held at zero potential and that the sites T are held at unit potential (we are assuming 
that sites R are adjacent to T ) .  Since the electrostatic potential 4 is a harmonic 
function for P the potential at site i is given by 

(2.5) 
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where N N (  i )  is the set of nearest neighbours of site i .  Writing (I$,,  q52, . . .) as a column 
vector V 

v = P V  = P"V (2.6) 

with n any integer. Now 

1 0  
'"'(A 0) (2.7) 

since 0" = 0, so that the potential at the boundary determines the potential in the interior 

VI = A VB = FD VB (2.8) 

or rewriting 

F-'V = ( 1  - Q) VI = DVB.  

Now the correspondence between absorption probabilities and potentials is established 
by 

(2.10) 

The technique is to solve the system of equations (2.9) for VI given V,. To do this 
we have used the well known method of successive over-relaxation (SOR) (see, e.g., 
Hageman and Young 1981). The only difficulty here is in selecting the value of the 
over-relaxation parameter, but using the semi-empirical adaptive procedure described 
by Hageman and Young we achieved very good results; with calculations having 
IS1 = 1024 taking only a few minutes of CPU time (Cray 1s) at an accuracy of 

Another method we have investigated is the continuous-time random walks used 
by Turkevich and Scher (1985). This has the advantage of not requiring the T boundary 
sites and thus eliminating any bias from this source. However, the difficulty with this 
method is in evaluating the lattice Green functions as time tends to infinity. The infinite 
limit cannot be obtained numerically which leads to a systematic error. This error is 
small if the number of surface sites is small (in practice less than about 40). This size 
of surface was too small to be of use in this study. The final method that we considered 
is the Monte Carlo method extensively used in the calculation of absorption prob- 
abilities in DLA and other problems. In comparison with the methods described above 
this method is slow and we have not used it in any serious way. 

We have studied the effect of the top cut-off boundary by adjusting it in two ways: 
first by changing the distance between the release sites and the substrate surface, and 
second by changing the distance between the release line and the upper absorbing 
surface. We find that the surface absorption probabilities rapidly approach limiting 
values as the boundary tends to the ideal case (i.e. the release line at infinity and the 
top absorbing surface infinitely further away still). This analysis shows that there is 
a maximum error introduced by the cut-off boundary of about 3%. This systematic 
bias has negligible effect on any conclusions we have drawn from the data. We have 
therefore taken the most expedient cut-off boundary. 

In summary, there are various ways of calculating { p i }  and we have tried those 
discussed above. We stress that all methods give the same results (to within the error 
bars) and our results have therefore been extensively cross-checked. We found the 
SOR method fastest and also very accurate. The results quoted in subsequent sections 
are from this method. 
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3. Calculation of a 

A useful way of understanding a is by considering a ‘wedge’ which has a ‘tip’ angle, 
y (see figure l ( a ) ) .  The spike in figure l ( b )  is the limiting wedge obtained when y = 0. 
If y were equal to 7r the surface would of course be flat. As the substrate sets considered 
here are less than two dimensional a subset of the substrate set of diameter I ,  will 
simply be referred to as ‘the segment 1,’. The absorption measure, for a f lat  surface, 
for any segment, l , ,  would behave like l : ,  i.e. a = 1. By solving Laplace’s equation in 
two dimensions using conformal transformations it can be shown (Turkevich and Scher 
1985) that a at the tip of a wedge is given by a = ~ / ( 2 m -  - y ) .  The wedge is useful as 
an  example because any singularity in the absorption measure can be thought of as 
arising from a wedge occurring on the segment I , .  This gives rise to a picture of an  
object, for which the absorption measure has many values of a, as consisting of many 
wedges. Numerically CY is obtained in the same way as a fractal dimension is computed. 
The segment l,, centred on the tip of the wedge is split into smaller segments, 6, of 
decreasing size, all centred on the wedge tip. For a given segment 6 the total probability, 
p ( S ) ,  of the diffusing particle being absorbed within 6 is determined numerically. Then 
a is given by 

i.e. by the slope of the log-log plot as 6 + 0 .  We also propose to use 

In pi ( 6 1 ai =- 
I n 6  * 

(3.1) 

(3.2) 

Note that equation (3.2) is an  equality in the limit as 6 + 0 ,  by (1.1). However, for 
finite 6, (3.2) is only approximate but, as will be shown below, it is in reasonable 
agreement with (3.1). It appears that the majority of studies use (3.2) either implicitly 
or explicitly. To test the effect of the lattice structure on a we calculated the absorption 
measure for a spike and  wedge. The probability of the particle being absorbed in a 
segment 6, for a range of lengths, are shown in figure 4. From the slope (as 6 + 0) the 
values of CY were obtained and  are given in table 1. The table includes the tip angle 

In 6 

Figure 4. A plot of In p ( S )  against In S for the wedge and spike. 
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Table 1. Table of (Y estimates. 

Angle Exact a d In p / d  In I In p / ln  I 

y = o  112 0.5 0.46 
y =  a13 315 0.69 0.53 

y = 51116 3 2.5 3.0 
y = 31112 2 2.2 1.8 

as well as the 'valley' angle (created by the periodic boundary conditions in the case 
of the wedge). The second column gives the exact values of a, the third column 
contains the values obtained from the small-S slope, i.e. equation (3.1), and the final 
column gives the results obtained by using (3.2), where the probability, p i ( S ) ,  is taken 
as the probability of the particle being absorbed on the lattice point on the tip of the 
wedge or spike. The results obtained by using (3.1) are in good agreement with the 
exact results, especially for the tip angles. The differences probably arise from the 
interference between the tip and valley and the systematic bias introduced by the 
boundary conditions (see § 2). 

For the Koch curve (see § 5) we use only (3.2) to calculate a, where pi is taken to 
be the probability of the particle being absorbed on the ith site. This approximation 
is justified by the reasonable agreement of the fourth column of table 1 with the exact 
results. The assumption is equivalent to replacing each lattice point of the Koch curve 
with a wedge. This assumption could be circumvented by increasing the number of 
substrate set points keeping the geometry fixed and using (3.1) to calculate each CY. 

This procedure, however, is ineffective at high recursion level because of limitations 
of computing power. At low recursion level there is not a sufficient number of different 
a to make such effort worthwhile. For these reasons we use (3.2) throughout. Note 
that in the Koch curve the angles y are all either 7r/3 or r / 6  but their environments 
differ, resulting in screening, which may alter the nature of the a exponents. 

In the q formalism, with li = 1 for all i, a ( q )  is given by 

The qth moment is taken to ensure that the sums are dominated by one value of the 
probability, p" and thus one value of a. This value of the probability is given by 

and for q = 0 this reduces to the geometric mean 

where N is the number of sites. Note, that it is only in the limit 1 +. 0 that q does pick 
out only one probability. For finite 1, the q formalism gives a sort of 'effective' a. 
Also, note that since amin = In pmax/ln 1 and amax = In pmin/ln 1 in these extremes the q 
formalism agrees with (3.2). 
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4. Calculation of f(a) 

Subsets of the substrate set with a in the interval [ a ,  a + d a ]  are distributed, in the 
limit 1 + 0, over sets of dimension f ( a ) ,  where f ( a )  is a Hausdorff dimension. Our 
working definition is 

f ( a )  = -In N ( a ) / l n  1 (4.1) 

which has the same status as equation (3.2). The results obtained from equation (4.1) 
are plotted in figure 5 for the spike as a histogram. The smooth curve represents values 
of f ( a )  obtained from the q formalism: 

f( a ( 4 ) )  = qa ( 4 )  - In P:/ln 1. (4.2) 

The q formalism treats f ( a )  in the same way as it treats a for finite systems and 
is thus some kind of effective dimension for an effective a ! 

40-’ 
Inp i ln l  , a 

Figure 5. A plot of the histogram of -In N(cu)/ln i against Inp l ln  i for the spike. The 
smooth curve is the corresponding f ( a )  curve. 

For the spike (with our boundary conditions), in the limit l + O ,  one expects 
rigorously (see Halsey er a1 1986b, 0 C1) only threef(a)  points, namely a = l , f ( a )  = 1 
corresponding to the flat region between the tip and the valley and two different a for 
the spike tip and valley both with f ( a )  = 0. As shown clearly in figure 5,  neither (4.1) 
nor the q formalism can reproduce this result. Both of these methods fail for finite 1 
by making interpolations between the three points. 

We do notice, however, that the histogram and the f( a )  curve are very similar and 
for discrete finite-size systems they appear to give the same results. One advantage of 
the q formalism is that it gives a smooth interpolated curve for a finite set { p l } .  Finally, 
notice that the maximum of the q formalismf(a) curve has f (a)max> 1 when in fact 
f(a)max = 1. This is because of (1.2) which effectively replaces each point of the 
substrate set (on the lattice) by a reduced copy of itself and hence forces a fractal 
structure onto the rough substrate set (see Halsey et a1 1986a, figure 2). However, as 
the number of lattice points defining the substrate set increases one would expect the 
computed f( a)max to tend to unity. This trend features in the case of the wedge where, 
for example, the numbers of substrate set points were 17,53 and 161 and the correspond- 
ing fractal dimensions 1.289 . . . , 1.204. . . and 1.156 . . . , respectively. 
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5. Koch and other incipient fractals 

In Wilkinson and Brak (1987) we have already seen that, for the Koch curve, the f (  a )  
curve is relatively insensitive to the level of recursion and this is confirmed by the 
much more extensive calculation-up to recursion level &as shown in figure 6. Note 
that the curve passes through two known points: (i)  the intercept (amin, 0) and (ii) the 
point ( a m a x ,  -In 6/ln I )  which arises because there are always six points on the Koch 
curve having the minimum absorption probability. In addition the q formalism forces 
the maximum of the curve (by (1.2)) to have f(a),,, = -In N/ ln  f with N equal to 
the total number of points (i .e.f(a)max = df, the fractal dimension of the substrate set). 
In figure 7 we compare the q formalism with the results obtained by using (4.1) where 
1024 lattice points are used to define the surface. Here again the results are in reasonably 
good agreement. 

The fact that (1.2) forces a recursive structure onto the substrate set is not a 
disadvantage for the Koch curve because of its inherent recursive structure. The 
consequent self-similarity is illustrated (see figure 8) by the penetration probability, 
this being the probability of a diffusing particle surviving a distance h (measured from 
the lowest point of the substrate set) before being absorbed. The cumulative surface 

““I 

a 
Figure 6. The f ( a )  curves for the Koch curve for the recursion levels 1, 2, 3 (512 points) 
and 4 (1024 points). 

x10-1 14 _i___- , __ 

L n p l l n i  , o! 

Figure 7. The histogram and f ( a )  curve for the Koch curve (recursion level 4). 
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40-~ 1 

i 

Height 

Figure 8. The penetration probability for the Koch curve. The height is measured from 
the lowest point of the curve upwards. 

probability measured from the left-hand end of the curve (i.e. pcum(x) =Z:=,.p,; see 
figure 2 for r), as shown in figure 9, also shows a self-similarity reminiscent of the 
‘devil’s staircase’ curve. The differential (along the substrate set) of the cumulative 
surface probability is pI and it clearly shows the presence of more than one similarity 
ratio. 

One of the principal motives of Halsey et al (1986b) was to give a universality 
class criterion. All of the different substrate sets studied so far give different f ( a )  
curves. This is desirable as the substrate sets themselves are rather different. How 
similar do the curves have to be before they have the same f ( a )  curve and hence 
belong to the same universality class? In an attempt to answer this question we studied 
two additional curves, K1 and K2, whose generators are shown in figures 2(b) and 
2( c ) .  These are qualitatively the same as the Koch curve and furthermore these curves 
both have the same fractal dimension, d f =  In 5/ln 4 = 1.16. . . (cf the Koch curve which 
has d f = l n  4/ln 3 = 1.26. .  .). T h e f ( a )  curves for these geometries are contrasted with 
that of the Koch curve in figure 10. Notice that for small a (which corresponds to 
the tip region of the curves) the K2 and Koch curve are quite similar. This is to be 
expected as both curves have the same tip angle, y = r / 3 .  This contrasts with the K, 

Y 10-l 
 distance,^ 

Figure 9. The cumulative surface probability, Z>=, p ,  for the Koch curve. The initial point 
i = r is taken as point r of figure 2 ( a ) .  Note the ‘devil’s staircase’ structure of the graph. 
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1.6 

t 

a 

Figure 10. The f ( a )  curves for the Koch, K, and K, curves. Note, the K, and Kz curves 
have the same fractal dimension but different f ( a )  curves. 

curve which tends to have a larger a as y = 2 ~ 1 3  for the tip region. Where the three 
curves might differ the most, with respect to their absorption measures, is in the valley 
regions (i.e. large a )  and this is just where the f ( a )  curves deviate the most. 

6. Conclusions 

In this paper we have calculated the absorption probabilities for particles diffusing 
onto perfectly absorbing boundaries using the SOR method. We have studied the f (  a )  
representation of Halsey et a1 (1986b) by means of simple test substrates (figure 1). 
We have contrasted the results of the q formalism with simple working definitions of 
a a n d f ( a )  (see (3.2) and (4.1)). In an extension of the work of Wilkinson and Brak 
(1987) we have calculated { p i }  for the Koch curve with up to 1024 points on the surface 
(recursion level 4). We have calculated other quantities (figures 8 and 9) associated 
with this curve and are able to see explicitly ‘multifractal’ scaling. To test for universality 
in the f (  a )  curves we have examined related fractal boundaries. 

It appears that the principal problem with using the f( a )  representation lies in the 
relation between the discrete nature of the substrate sets and the limiting behaviour 
as 8 + 0 and 1 + 0 (in that order). The limit S + 0 (to obtain the a )  presents little 
problem. For the wedge and the spike it is simple to implement numerically and the 
discrete lattice structure gives good results for the exponents a. For the Koch, K, and 
K2 substrate sets this procedure could also be used but would only give a very small 
number of cy. There is a strong possibility of losing the interpretation arising from 
(3.1) if (3.2) is used in its place. However, using (3.2) gives as many a as there are 
points on the substrate set and if each lattice point has a wedge structure at some 
lower recursion level then (3.2) is a good numerical approximation and, furthermore, 
the interpretation is not lost. We have assumed this to be the case for the incipient 
fractal curves. 

The limit 1 + 0 is far more difficult to implement without jeopardising the interpreta- 
tion o f f ( a ) .  Clearly it fails in the case of the wedge and the spike both when (4.1) 
and when the q formalism is used. This appears to be because (1.2) forces a fractal 
structure on the substrate set whether it is fractal or not. That this is so follows directly 
from (1.2) and can be clearly seen in the variation of f (a )max with recursion level for 
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the wedge (and spike): f (a) , , ,  is rigorously one but (1.2) forces it to be the fractal 
dimension of an object whose generator is the wedge (or spike). Because of this the 
f ( a )  representation cannot, for discrete finite-size systems, be used as a criterion for 
the existence of multifractal structure. It is also suspect even for fractal substrate sets 
that f ( a )  remains true to its interpretation. The q formalism gives similar results for 
the substrate sets to those obtained through the working definitions (3.2) and (4.1). 

The penetration probability and the cumulative surface probability for the Koch 
curve both have a self-similar structure. However, the graphs d o  not have a single 
similarity ratio and this, combined with the self-similar structure, suggests they must 
be multifractal. We emphasise that a f ( a )  curve can be obtained numerically even 
when there is no hint of multifractality in the problem. 

The f ( a )  representation does provide a mesoscopic description in so far as the 
f ( a )  curves for the K,  and  K2 substrate sets are different despite the two substrate 
sets having the same fractal dimension. 
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